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Optimization techniques which incorporate multiple objectives and operate
within a soft decision environment offer great promise for increasing the utility
of forest planning models. Using de novo programming, we illustrate the
potential use of designing optimal forest systems in the face of conflicting
objectives. A multiple objective linear programming model is used to illustrate
this approach. Both the generation and evaluation of compromise solutions
under de novo conditions are discussed.
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1. Introduction

Forest planners were introduced to de novo programming by Bare and Mendoza (1988)
who briefly described the approach and demonstrated its use on an illustrative forest
planning example. In this paper, we wish to further describe this approach within a
forest planning context by incorporating multiple design criteria, considering more than
two objectives, examining the trade-offs between conflicting objectives, and discussing
ways to generate and evaluate compromise solutions. We employ a modified version of
the same problem used in our previous paper to facilitate comparison of the results.
Linear programming (LP) is the dominant quantitative tool used for forest land
management planning in the United States. However, LP’s inherent limitations (i.e.,
linearity, divisibility, and certainty) remain as barriers to more effective forest land
management planning (Bare and Field, 1987; Iverson and Alston, 1986). Further, it is
very difficult to incorporate the political, social and non-quantifiable dimensions of
national forest planning into a traditional LP formulation. Although several attempts
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238 Forest plans with de novo programming

have been made (e.g., Mendoza et al., 1987; Mendoza and Bare, 1987; Mendoza and
Sprouse, 1989), two key aspects of forest planning LP formulations remain of concern:
(a) the use of a single objective function and (b) the common use of LP to optimize a
given system rather than to design an optimal system. While other problems remain
troublesome (i.e., spatial integrity, hierarchical structure and problem size), the objective
of this paper is to illustrate how a de novo programming approach can be used to help
resolve forest planning problems when faced with conflicting multiple objectives.

2. De novo programming

The literature on de novo programming is dominated by the work of Zeleny (1981, 1982,
1985, 1986a, 1986b). This approach addresses muitiple (single) objective problems by
determining the right hand side (RHS) of some, or all, constraints for given resource
costs and limitations. Those constraints whose RHSs are fixed (given) are termed “‘hard”
and those which are to be determined through analysis are labeled “‘soft”. Soft
constraints permit the analyst to design an optimal system (i.e., simultaneously
determine the RHS along with the level of output).

A related technique known as generalized LP (Dantzig, 1963; Lasdon, 1970) allows
the objective function and technical constraint coefficients to vary. However, the RHSs
are fixed in such problems.

Zeleny’s External Reconstruction Algorithm (ERA) is an example of a de novo
algorithm which can be used to solve problems where some of the constraint levels are to
be designed. This solution is accomplished by defining an aggregate constraint for each
design criterion which initially consists of either: (a) fixed inequality constraints, (b) soft
inequality constraints to be designed, or (c) any combination of the above. All equality
constraints are viewed as hard (fixed) and are excluded from the aggregate constraint(s).

As described by Bare and Mendoza (1988) and Zeleny (1986a), an iterative
procedure is used successively to decouple all fixed inequality constraints from the
aggregate constraint(s) until all of the original fixed inequalities are satisfied. At this
point, the optimal solution also shows the RHSs of the soft constraints being designed.
For instance, consider the mathematical model shown below:

Max Z=ZLc,x, (D
s.t.

Ta,x,<=or=bi= 1,2,...m 2)
x>=0 j=12,...,n 3)

J

Suppose that s of the m constraints are soft while the remaining 4 (h=m— s) constraints
(including any equalities) are hard. Given this situation, the mathematical model for de
novo programming is:

Max Z= chl.xj
s.t.

T.a ,x,<=or=b, for all ieh hard constraints (4)
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Zj (Ziaipik)xj=zipikbi< =B, k=1.2,...p (3)
x> =0 aggregate constraints

where p, >0 is the per unit cost of a given resource b, which is to be designed, and B, is
the amount of the kth resource available for designing. Equation (5) is used to determine
the amount of each resource to purchase to design the most efficient system. As
constraints are decoupled from the aggregate constraint [equation (5)], they are treated
as fixed [i.e.. transferred to equation (4)]; the B, are reduced; and another iteration is
performed.

For previous applications to forestry, Bare and Mendoza (1988) discuss a soft
optimization approach to forest planning and Mendoza and Bare (1988) investigate a
log allocation problem common in forest industry.

3. Forest planning illustration

The sample problem used to illustrate de novo programming is extracted from Johnson
(1986). However, as described by Bare and Mendoza (1988), it is modified to reflect
multiple objectives and additional resource alternatives. Table 1 contains the coefficient
matrix for this problem, showing four analysis areas. possible management alternatives
for each area over a three decade planning horizon, constraints and the objective
functions.

The land accounting and the bird habitat constraints are expressed in acres; the yield
constraints sum the cubic foot harvest for each decade and insure a non-declining yield
over time; the clearcutting constraints limit clearcutting to at most 30% of the two
loblolly pine analysis areas in any one decade; and the picnic and hiking constraints limit
output to at most 200 picnic sites and 50 miles of hiking trails over three decades. As
depicted in Table 1, the problem involves four objective functions, 19 constraints and 27
decision variables.

3.1. CASE1

The first analysis consists of solving four LP problems derived from the information
presented in Table 1. Each involves the optimization of one of the objective functions
without consideration of the remaining three objectives. Standard LP solution proced-
ures are used and all constraints are taken as fixed. Thus, the problem is viewed in the
classical sense of optimizing within a previously specified decision environment. The
resulting pay-off table shown in Table 2 contains the ideal solution on the diagonal.

The objective functions are defined in terms of maximizing net present value (NPV),
minimizing sediment production (SED), maximizing timber yield (TBR), and maximiz-
ing forage production (FOR). As expected, the four optimal solutions derived when
optimizing each objective function separately are quite different. The MAX NPV
solution (§14 781-25) produces 145 000 ft’ of harvest volume from analysis area 3 as well
as 200 picnic sites and 10 miles of hiking trails. Units 1 and 2 are both assigned the
minimum level of management and unit 4 is managed for high intensity forage,
producing 30 000 AUMs of forage. Sediment production over the three planning periods
totals 541-875 tons and no clearcut harvest alternatives are selected. Labor utilization
over the three periods is 100, 62-5, and 100 man-days, respectively.
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TaBLE 2. Case I: ideal solution for sample forest planning problem

Objective function Functional value

Z, (8) Z, (Tons) Z,(CF) Z,(AUMs)
Maximum Z, (NPV) 14 781-25 541-875 145-000 30 000
Minimum |Z, (SED) - 1800-00 300-000 0 20000
Maximum Z, (TBR) 12 581-25 391-875 145 000 20 000
Maximum Z, (FOR) -1100.00 450-000 0 30000

NPV = net present value ($); TBR =timber production (CF); SED = sediment yield (Tons), FOR= forage
production (AUM).

The MIN SED solution (300 tons over the three decades), yields a net present value
of —$1800 and no timber is scheduled for harvest. Instead, minimum level management
is selected for planning units 1-3. Low intensity forage production for unit 4 produces
20 000 AUMs of forage. No picnic sites or hiking trails are constructed and 100 man-
days of labor are unallocated each period.

The MAX TBR solution produces 145000 ft* and a net present value of $12 581-25.
The solution is similar to the MAX NPV solution with minimum management selected
for units 1-2 but low intensity forage for unit 4. Thus, only 20 000 AUM of forage are
produced. All timber harvested comes from unit 3, but no picnic sites or hiking trails are
constructed. Sediment production is 391-875 tons and over the three periods 100, 62-5,

and 100 man-days of labor are utilized.

Finally, the MAX FOR solution produces 30 000 AUM:s of forage with a net present
value of —$1100 and a sediment production of 450 tons. Timber production and
recreational benefits are nonexistent as minimum management is selected for units 1-3
and high intensity forage production for unit 4. All labor remains unallocated.

3.3. CASEII

To this point, the analysis has proceeded in a classical fashion. Clearly, .the decision
maker is faced with a variety of conflicting objectives for the area in question. For
example, trade-offs exist between higher NPVs and lower amounts of sediment produc-
tion or higher levels of forage production with increased sediment yields. Ways of
dealing with this have been examined in a variety of multiple objective analyses as cited
earlier in this paper. Here, we wish to illustrate the use of de novo programming for
designing an optimal system when faced with conflicting objectives. To begin this
procedure, we assume that man-days of labor and dollars of budget allocated to the two
recreational activities are soft resources. Thus, we identify two design criteria—labor
and budget. The unit costs for picnic sites and hiking trails are $1000/site and $3000/
mile, respectively. Thus, the total cost of including these two activities at the maximum
levels shown in Table 1 is $350 000 (i.e., 200 x $1000 + 50 x $3000). The three decade
labor resource is limited to 300 man-days which is the amount of available labor shown
in Table 1.

Using Zeleny’s ERA, the three labor constraints are converted into one aggregate
labor constraint and the two recreational constraints into one aggregate budget
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constraint. This yields the following two soft constraints which are substituted for the
original five constraints, respectively:

Labor

2x 7y + 2x 3y H Ay +Ax,0, + 2050+ 200 + 22X, + 205+ dxy5, + 255,
< =300 man-days

Budget
10-6x,5, +2:3x ;, + 10:6x,5, + 2:3x,, + 10-6xy5, +2:3x,,, < =$350

Maximizing NPV with these two design criteria yields a MAX NPV of $17 184:61 and a
three decade timber harvest of 163 800 ft*>. In addition, 562-92 tons of sediment, 30434
picnic sites, 15-22 miles of hiking trails, and 30 000 AUMs are produced. In terms of
NPV, this solution is superior to that obtained when resource levels are considered fixed
(i.e., Case I). While more timber is generated, so too are more picnic sites, hiking trails,
and sediment. Although the advantages of designing the optimal system in terms of NPV
are clear, the conflict between competing objectives still exists. This solution also
specifies that the requirements for labor over the three decades is 115:2, 64-8, and 120
man-days, respectively. Thus, all 300 man-days are allocated. Further, the total budget is
allocated to the two recreational activities.

When minimizing sediment production, it is not possible to design a more efficient
system than was shown for Case I. Thus, 300 tons is the minimum production over the
three planning periods.

Designing the optimal system when maximizing TBR leads to a harvest volume of
190 189 ft* over the three periods. However, sediment production is increased to 803-868
tons and NPV is reduced to $8312-26. Forage production is retained at its maximum
value of 30 000 AUMs. No picnic sites or hiking trails are constructed (i.e., the budget
remains unallocated), but all labor is allocated (i.e., 0, 118-86, and 181-14 man-days,
respectively, for the three decades).

The maximum forage production remains at 30000 AUMs when designing the
optimal system. However, timber production is increased from zero (Case I) to 161 280
ft’ and sediment yield rises to 503-32 tons. The net present value is $14 187-60. No picnic
sites or hiking trails are constructed (i.e., the budget remains unallocated) and only 295-2
man-days of labor are required (i.e., 115-2, 64-8, and 115-2, respectively, for the three
decades).

These four solutions define the “system ideal’ —that is, the optimal solution when
the soft constraints are designed for each objective function. It differs from the ideal
solution (Table 2) which is obtained by assuming that all constraints are ““hard” and not
subject to design. A summary of the system ideal is contained in Table 3.

3.3. CASE II1

While Case II illustrates the use of de novo programming for designing an efficient
system, it does not directly address the conflicts between the multiple objectives.
However, it is clear from results shown for Case I that the ideal solution cannot be
achieved. And, this remains true when we attempt to design a more efficient system as in
Case II.
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TasLE 3. Case II: system ideal solution for sample forest planning problem using de novo

programming
Objective function Functional value
Z, (%) Z, (Tons) Z,(CF) Z,(AUMs)
Maximum Z, (NPV) 17 184-61 562:920 163 800 30 000
Minimum Z, (SED) — 1800-00 300-000 0 20000
Maximum Z, (TBR) . 8312:26 803-868 190-189 30000
Maximum Z, (FOR) 14 187-60 503-320 161280 30 000

NPV = net present value ($); TBR =timber production (CF): SED = sediment yield (Tons); FOR = forage
production (AUM).

Retaining the two soft aggregate constraints (associated with the two design criteria)
in place of the three labor and the two recreational constraints, and recognizing that the
system ideal solution is not possible to attain. we now analyse ways of producing
satisfactory compromise solutions which get us as close to the system ideal as possible.

Two related issues now confront us. First, we need to generate a set of feasible
compromise solutions and second we need to evaluate each solution to determine how
well it performs across the entire set of objectives. Both aspects of the analysis are done
under conditions of a soft decision environment.

Mendoza et al. (1987) discuss Modeling to Generate Alternatives as a way to
generate maximally different solutions in decision space while producing satisfactory
levels of performance in objective space. Another possibility is to use goal programming
(of some other multiple objective programming technique) whereby the weights assigned
to different objective functions are manipulated until a satisfactory compromise solution
is derived (Rustagi and Bare, 1987). Lastly, Bare and Mendoza (1988a) illustrate use of
the STEM method for identifying compromise solutions in an interactive decision
environment. Below we employ both the STEM method and the use of a weighted
objective function to demonstrate how compromise solutions can be identified in a de
novo environment.

Once generated, the compromise solutions need to be assessed systematically. This
can be done following a structured framework (e.g., the analytic heirarchy process) or a
more heuristic approach. Because our primary purpose is to demonstrate the use of de
novo programming and not to discuss techniques for generating and assessing alternative
solutions (e.g., Mendoza and Sprouse, 1988), we adopt the less-structured heuristic
approach.

First, we equally weight the four objectives (after scaling) and use the ERA to design
the optimal levels of the two soft constraints. This compromise solution produces a NPV
of $17 17021, a sediment load of 553-32 tons, 161 280 ft* of timber and 30 000 AUMs of
forage over the three planning periods. This solution calls for minimum level manage-
ment in units 1 and 2 and high intensity forage in unit 4. The total timber harvest of
161 280 ft’ comes from unit 3 as do the 304-34 picnic sites and 15-22 miles of hiking trails.
In comparison with the Case I ideal solution, this compromise solution produces more
net present value and timber; an equal amount of forage; but higher sediment yields. In
comparison with Case II, this solution produces less NPV, more sediment, less timber
and equal amounts of forage and recreational opportunities. Labor utilization over the
three periods is 115-2, 64-8 and 115-2 man-days, respectively, for a total allocation of
295-2 man-days. This compromise solution is summarized in Table 4 (row five) along
with the system ideal in rows 1-4.
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At this point, the decision maker must decide whether or not to accept the
compromise solution obtained when using equal weights. Suppose the decision maker is
satisfied with the level of attainment of the NPV and FOR objectives, but wishes to
determine if lower levels of sediment and higher volumes of timber can be obtained. An
examination of Table 1 shows that lower sediment yields only can be attained by
lowering forage and/or timber production. Further, lower sediment yields and/or higher
levels of timber output can only be achieved by allowing for reduced levels of net present
value and forage. Thus, the conflicts between the various objectives must be resolved if a
satisfactory compromise solution is to be realized.

To further explore other compromise solutions using de novo programming, several
additional weighting schemes are examined. Results of these calculations, shown in
Table 4, reveal the sensitivity of solutions to the weights. Compromise solution number
two (row six) uses larger weights for the two objectives judged to be unsatisfactory in the
first compromise solution (i.e., sediment and timber) and smaller weights for the
remaining two objectives. A comparison of the first two compromise solutions shows the
magnitude of the trade-offs which result. By assigning increased weight to the sediment
objective, both the level of forage and timber production have decreased. And, this
occurs even though a larger weight was assigned to the timber objective. Predictably, the
net present value objective has also decreased. Assuming that the decision maker is
satisfied with the NPV and TBR objectives as shown in corripromise solution two, but
not the forage or sediment production lcvels, an additional compromisc solution is
needed. Inspection of Table | reveals that increased forage production can only be
realized at the expense of decreased timber production—if reduction of sediment yields
is also required. A third compromise solution shown in Table 4 (row seven) attempts to
do this by assigning a larger weight to the forage objective and a smaller weight to the
timber objective. The resulting compromise solution produces satisfactory levels of
output for the NPV, TBR and FOR objectives. However, the solution also leads to
increased levels of sediment yield relative to the second compromise solution.

TaBLE 4. Case III: compromise solutions for alternative weighting schemes using de novo

programming
Weights Functional values
Row NPV SED TBR FOR NPV SED TBR FOR
(%) (Tons) (CF) (AUMs)
1 1-0 0-0 0-0 0-0 17 18461  562-92 163-800 30000
2 0-0 1-0 0-0 0-0 —1800-00  300-00 0 20 000
3 0-0 0-0 1:0 0-0 8312.26  803-87 190 189 30 000
4 0-0 0-0 0-0 1-0 14187-60  503-32 161 280 30000
5 0-25 0-25 0-25 0-25 17170-21  553-32 161280 30 000
6 0-05 0-45 0-45 0-05 16412:61  401-77 160 615 20 000
7 0-05 0-45 0-05 0-45 16412:61  501-77 160 615 30 000
8 - — — - 16 300-00  451-38 160 000 25000
9 — — — - 1630000  401-38 160 000 20 000

Rows 14 contain the system ideal solution. Rows 5-7 contain compromise solutions using the weighted
objective approach. Rows 8-9 contain compromise solutions using the STEM method.

NPV = Net present value (§); TBR = Timber production (CF); SED = Sediment yield (Tons); FOR = Forage
production (AUM).
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These three compromise solutions illustrate the process one employs when using a
weighted objective function approach for resolving conflicts among multiple objectives
using de novo programming. Because all compromise solutions produced equivalent
recreational outputs and used equal amounts of labor, there was no difference between
solutions with regards to the two soft constraints. To determine if a more satisfactory
compromise solution can be derived we now switch to an alternate approach which uses
the STEM method.

Assuming that the decision maker wishes to find another compromise solution which
yields less sediment without seriously reducing the output of the three remaining
objectives, we can proceed by minimizing sediment subject to the additional constraints
that NPV be at least $16 300; TBR be at least 160000 ft> and FOR be at least 25000
AUMs. These minimum values represent the lowest values that the decision maker
deems acceptable. Given these attainment levels, and using de novo programming, the
fourth compromise solution (Table 4, row eight) produces a minimum of 451-38 tons of
sediment while just satisfying the specified attainment levels for the three remaining
objectives. This compromise solution clearly demonstrates that lower sediment yields
only can be achieved by lowering the attainment level for forage.

For example, a fifth compromise solution shown in Table 4 (row nine) reduces the
desired forage output to 20 000 AUMs while keeping the net present value and timber
objectives unchanged. The compromise solution results in a sediment yield of 401-38
tons while just satisfying the specified attainment levels for the three remaining
objectives.

The fourth and fifth compromise solutions—obtained using the STEM method—
produce slightly different levels of recreational outputs and use different amounts of
labor than the previous compromise solutions. For example, 305-28 picnic sites, 14-91
miles of trail and 289-6 man-days of labor are generated under de novo conditions for the
last two compromise solutions. The allocation of acres to management treatments does
not differ significantly between any of the compromise solutions, with the exception that
the last two involve a small allocation of unit one to developed recreation.

4. Conclusions

Multiple objective LP is receiving increased attention as a viable forest planning
technique. However, most analysts use this tool to optimize given systems and not to
design optimal systems. In this paper, we demonstrate the value of de novo programming
involving multiple objectives.

Soft optimization procedures allow the analyst to design an optimal system by
treating the RHSs of constraints as soft, and not fixed as in traditional multiple objective
LP. Using a forest planning example, we demonstrate how optimal plans can be derived
using de novo programming when two design criteria are employed. Both a weighted
objective and the STEM method are used to generate compromise solutions under a de
novo environment. Although generated solutions are evaluated subjectively, a more
structured approach could be used.

The examples illustrate the potential usefulness of de novo programming in generat-
ing efficient forest plans under conflicting objectives. However, in the final analysis, the
decision maker must assume the responsibiltiy for making the ultimate choice of which
compromise solution will be adopted.
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